分两步进行.
①先求∠BAC:
∠PCD=∠PBC+∠BPC,
即1/2∠ACD=40°+1/2∠ABC,
∴∠ACD=∠ABC+80°,
又∠ACD=∠ABC+∠BAC,
∴∠BAC=80°;
②证P在∠BAC的外角平分线上:
过P分别作PM⊥BC于M,PN⊥AC于N,PQ⊥BA的延长线于Q,
由角平分线性质定理得:PM=PN,PM=PQ,
∴PN=PQ,
∴P在∠QAC的角平分线上,
∴∠CAP=1/2(180°-∠BAC)=50°.
欢迎追问.
分两步进行.
①先求∠BAC:
∠PCD=∠PBC+∠BPC,
即1/2∠ACD=40°+1/2∠ABC,
∴∠ACD=∠ABC+80°,
又∠ACD=∠ABC+∠BAC,
∴∠BAC=80°;
②证P在∠BAC的外角平分线上:
过P分别作PM⊥BC于M,PN⊥AC于N,PQ⊥BA的延长线于Q,
由角平分线性质定理得:PM=PN,PM=PQ,
∴PN=PQ,
∴P在∠QAC的角平分线上,
∴∠CAP=1/2(180°-∠BAC)=50°.
欢迎追问.