(一) ∵BE=AB(已知) ∴∠1=∠BAE(同一三角形中,等边对等角)
∵∠1+∠BAE+∠B=180°(三角形内角和定理)
∴∠1=(180°-∠B) (等式性质)
同理可求∠2=(180°-∠C)
在△ADE中,∵∠DAE=180°-(∠1+∠2)(三角形内角和定理)
∴∠DAE=180°-[ (180°-∠B)+(180°-∠C)](等量代换)
=180°-(180°-∠B- ∠C)
=(∠B+∠C)
又∵∠BAC=90°(已知) ∠BAC+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=180°-90°=90°(等式性质)
∴∠DAE=(∠B+∠C)(已证)
=×90°(等量代换)
=45°