(sina-sinb)^2+(cosa-cosb)^2
=(sin^2a-2sina*sinb+sin^2b)+(cos^2a-2cosacosb+cos^2b)
=(sin^2a+cos^2a)+(sin^2b+cos^2b)-2(sinasinb+cosacoab)
=2-2cos(a-b)
=(√3/2)²+(1/2)²
=3/4+1/2
=1
即 2-2cos(a-b)=1 所以cos(α-β)=1/2
(sina-sinb)^2+(cosa-cosb)^2
=(sin^2a-2sina*sinb+sin^2b)+(cos^2a-2cosacosb+cos^2b)
=(sin^2a+cos^2a)+(sin^2b+cos^2b)-2(sinasinb+cosacoab)
=2-2cos(a-b)
=(√3/2)²+(1/2)²
=3/4+1/2
=1
即 2-2cos(a-b)=1 所以cos(α-β)=1/2