圆C:x^2+y^2-8y+12=0
x^2+(y-4)^2=4
圆心(0,4) 半径2
直线L ax+y+2a=0
由平面几何的知识
弦长为2√2 半径为2
可知直线到圆心距离 √[2^2-(√2)^2]=√2
即直线到圆心(0,4)距离√2
d=|0*a+4+2a|/√(1+a^2)=√2
化简得
a^2+8a+7=0
a=-1或a=-7
可知直线方程
-x+y-2=0或-7x+7-14=0
圆C:x^2+y^2-8y+12=0
x^2+(y-4)^2=4
圆心(0,4) 半径2
直线L ax+y+2a=0
由平面几何的知识
弦长为2√2 半径为2
可知直线到圆心距离 √[2^2-(√2)^2]=√2
即直线到圆心(0,4)距离√2
d=|0*a+4+2a|/√(1+a^2)=√2
化简得
a^2+8a+7=0
a=-1或a=-7
可知直线方程
-x+y-2=0或-7x+7-14=0