解题思路:(1)要保证点在圆外,则点到圆心的距离应大于圆的半径,根据这一数量关系就可得到r的取值范围;
(2)根据点到圆心的距离小于圆的半径,则点在圆内和点到圆心的距离应大于圆的半径,则点在圆外求得r的取值范围.
(1)当0<r<3时,点A、B在⊙C外;
(2)当3<r<4时,点A在⊙C内,点B在⊙C外.
点评:
本题考点: 点与圆的位置关系;勾股定理.
考点点评: 能够根据点和圆的位置关系得到相关的数量关系.
解题思路:(1)要保证点在圆外,则点到圆心的距离应大于圆的半径,根据这一数量关系就可得到r的取值范围;
(2)根据点到圆心的距离小于圆的半径,则点在圆内和点到圆心的距离应大于圆的半径,则点在圆外求得r的取值范围.
(1)当0<r<3时,点A、B在⊙C外;
(2)当3<r<4时,点A在⊙C内,点B在⊙C外.
点评:
本题考点: 点与圆的位置关系;勾股定理.
考点点评: 能够根据点和圆的位置关系得到相关的数量关系.