解题思路:把圆的方程化为标准形式,求出圆心和半径,再根据直线y=ax+1经过定点B(0,1),而点B在圆的内部,可得
直线和圆相交.
圆x2+y2-2x=3 即(x-1)2+y2=4,表示以A(1,0)为圆心,半径等于2的圆.
直线y=ax+1经过定点B(0,1),而点B到圆心A的距离为
2,小于半径,故点B在圆的内部,
故直线和圆相交,
故答案为:2.
点评:
本题考点: 直线与圆的位置关系.
考点点评: 本题主要考查直线经过定点、圆的标准方程,直线和圆的位置关系的确定,属于中档题.
解题思路:把圆的方程化为标准形式,求出圆心和半径,再根据直线y=ax+1经过定点B(0,1),而点B在圆的内部,可得
直线和圆相交.
圆x2+y2-2x=3 即(x-1)2+y2=4,表示以A(1,0)为圆心,半径等于2的圆.
直线y=ax+1经过定点B(0,1),而点B到圆心A的距离为
2,小于半径,故点B在圆的内部,
故直线和圆相交,
故答案为:2.
点评:
本题考点: 直线与圆的位置关系.
考点点评: 本题主要考查直线经过定点、圆的标准方程,直线和圆的位置关系的确定,属于中档题.