f(x)=sinx+(根号3)cosx如何等于2cos(x-π/6)
1个回答
解
f(x)=sinx+√3cosx
=2(1/2sinx+√3/2cosx)
=2(cosxcosπ/6+sinxsinπ/6)
=2cos(x-π/6)
相关问题
f(x)=(cosx)^2-(sinx)^2-根号3cos(π/2+2x)
fx=cosx(2根号3sinx-cosx)+cos^2(π/2-x)
已知函数f(x)=cos(2x-π/3)+(cosx+sinx)(cosx-sinx)
f(x)=根号3cosx-sinx(0≤x≤π/6)的值域
f(x)=3/2根号3sinx*cosx+cos^2(x-π/6)-3/2sin^2x+1/4 若f(X)=4/5(0<
(cos(x/2)/(根号1+sinx))+(sin(x/2)/根号(1-cosx)),x属于(3/2π,2π)
已知函数f(x)=根号3sinx-cosx,x∈〔-π/2,π/2〕
已知向量a=(2cosx,cosx-√3sinx),b=(cos(x-π/6),sinx)设f(x)=a*b+2
cosx-sinx=根号2*cos(x+4/π)吗
f(x)=2cos*sin(x+π/3)-^3sin^2x+sinx*cosx