此题应该是“求sin(2x)/sin(3x)的极限,其中x趋进于0”吧?解法如下.
解法一:原式=lim(x->0){(2/3)*[sin(2x)/(2x)]*[(3x)/sin(3x)]}
=(2/3)*lim(x->0)[sin(2x)/(2x)]*lim(x->0)[(3x)/sin(3x)]
=(2/3)*1*1 (应用重要极限lim(z->0)(sinz/z)=1)
=2/3;
解法二:原式=lim(x->0){[2cos(2x)]/[3cos(3x)]} (0/0型极限,应用罗比达法则)
=(2*1)/(3*1)
=2/3.