f(x)=1/2(e^x+e^-x)
df/dx = (1/2)[e^x - e^(-x)]
d^2f/d^2x = (1/2)[e^x + e^(-x)] > 0
令 df/dx = 0
得 e^x - e^(-x),e^2x = 1,x = 0
f极小 = (1/2)(1 + 1)=1
答案:极小值为 1,极小值的坐标为 (0,1).
f(x)=1/2(e^x+e^-x)
df/dx = (1/2)[e^x - e^(-x)]
d^2f/d^2x = (1/2)[e^x + e^(-x)] > 0
令 df/dx = 0
得 e^x - e^(-x),e^2x = 1,x = 0
f极小 = (1/2)(1 + 1)=1
答案:极小值为 1,极小值的坐标为 (0,1).