(x^5 +1)/(x²+1)
=(x^5+x³-x³-x+x+1)/(x²+1)
=[x³(x²+1)-x(x²+1)+x+1]/(x²+1)
=x³ -x +x/(x²+1) +1/(x²+1)
∫[(x^5 +1)/(x²+1)]dx
=∫[x³ -x +x/(x²+1) +1/(x²+1)]dx
=x⁴/4 -x²/2 +(1/2)ln(x²+1) +arctan(x) +C
(x^5 +1)/(x²+1)
=(x^5+x³-x³-x+x+1)/(x²+1)
=[x³(x²+1)-x(x²+1)+x+1]/(x²+1)
=x³ -x +x/(x²+1) +1/(x²+1)
∫[(x^5 +1)/(x²+1)]dx
=∫[x³ -x +x/(x²+1) +1/(x²+1)]dx
=x⁴/4 -x²/2 +(1/2)ln(x²+1) +arctan(x) +C