证明:(1)过C点作CC1⊥AB,垂足为C1,则△AEE1≌△CAC1,△BGG1≌△CBC1,所以AE1=CC1=BG1;
(2)由(1)得EE1=AC1,GG1=BC1,所以EE1+GG1=AC1+BC1=AB;
(3)连DF,则△DCF≌△ACB,设DF交CC1的反向延长线于H,∠FDC=∠BAC=∠BCC1=∠HCD,所以DH=CH=HF,即H为AB的中点,则C1为D1F1的中点,所以DD1+FF1=2HC1=2(HC+CC1)=DF+2CC1=AB+AE1+BG1=E1G1.
证明:(1)过C点作CC1⊥AB,垂足为C1,则△AEE1≌△CAC1,△BGG1≌△CBC1,所以AE1=CC1=BG1;
(2)由(1)得EE1=AC1,GG1=BC1,所以EE1+GG1=AC1+BC1=AB;
(3)连DF,则△DCF≌△ACB,设DF交CC1的反向延长线于H,∠FDC=∠BAC=∠BCC1=∠HCD,所以DH=CH=HF,即H为AB的中点,则C1为D1F1的中点,所以DD1+FF1=2HC1=2(HC+CC1)=DF+2CC1=AB+AE1+BG1=E1G1.