解
把本题看成一个数列的前99项和
通项an=1/[(n+1)√n+n√(n+1)]
1/√n-1/√(n+1) ——分子分母同乘[(n+1)√n-n√(n+1)]再化简即得
于是,
原式=(1/√1-1/√2)+(1/√2-1/√3)+(1/√3-1/√4)+.+(1/√99-1/√100)
=1/√1-1/√100=1-1/10=9/10
解
把本题看成一个数列的前99项和
通项an=1/[(n+1)√n+n√(n+1)]
1/√n-1/√(n+1) ——分子分母同乘[(n+1)√n-n√(n+1)]再化简即得
于是,
原式=(1/√1-1/√2)+(1/√2-1/√3)+(1/√3-1/√4)+.+(1/√99-1/√100)
=1/√1-1/√100=1-1/10=9/10