f(x)=a×b=√3sinxcosx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
所以周期T=2π/2=π
因为0≤x≤π/2,所以-π/6≤2x-π/6≤5/6π
所以sin(2x-π/6)∈[-1/2,1]
当2x-π/6=-π/6,即x=0时,f(x)取最小值,最小值为-1/2
当2x-π/6=π/2,即 x=π/3时,f(x)取最大值,最大值为1
f(x)=a×b=√3sinxcosx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
所以周期T=2π/2=π
因为0≤x≤π/2,所以-π/6≤2x-π/6≤5/6π
所以sin(2x-π/6)∈[-1/2,1]
当2x-π/6=-π/6,即x=0时,f(x)取最小值,最小值为-1/2
当2x-π/6=π/2,即 x=π/3时,f(x)取最大值,最大值为1