在锐角△ABC,角A、B、C所对的边分别为a,b,c,已知sinA=2√2/3,

1个回答

  • sinA=2√2/3,

    因为是锐角三角形,

    所以cosA=1/3

    tan^2[(B+C)/2]+sin^2 (A/2)

    =tan^2(π-A)/2+sin^2(A/2)

    =cot^2(A/2)+sin^2(A/2)

    =(cos^2(A/2)/sin^2(A/2)+sin^2(A/2)

    =[cos^2(A/2)+sin^2(A/2)*sin^2(A/2)]/sin^2(A/2)

    =[cos^2(A/2)+(1-cos^2(A/2)*sin^2(A/2)]/sin^2(A/2)

    =[cos^2(A/2)+sin^2(A/2)-cos^2(A/2)*sin^2(A/2)]/sin^2(A/2)

    =[1-(1/4)sin^2A]/[(1-cosA)/2]

    =[1-(1/4)2√2/3]/[(1-1/3)/2]

    =(6-√2)/2

    (2)

    S=(1/2)bcsinA=(1/2)bc*2√2/3=√2

    所以bc=3

    根据余弦定理

    a^2-b^2-c^2+2bccosA=0,

    即4-b^2-c^2+2bc*1/3=0

    解得:b=c=√3