代入可得到s1=-2/3,s2=-3/4,s3=-4/5,s4=-5/6
猜想sn=-(n+1)/(n+2) 代入证明即可
∵ Sn=S(n-1)+an+1/Sn+2=an
∴ Sn=-1/[S(n-1)+2]
∴Sn+1=[S(n-1)+1]/[S(n-1)+2]
∴1/(Sn+1)=1+1/[S(n-1)+1] n≥2
代入可得到s1=-2/3,s2=-3/4,s3=-4/5,s4=-5/6
猜想sn=-(n+1)/(n+2) 代入证明即可
∵ Sn=S(n-1)+an+1/Sn+2=an
∴ Sn=-1/[S(n-1)+2]
∴Sn+1=[S(n-1)+1]/[S(n-1)+2]
∴1/(Sn+1)=1+1/[S(n-1)+1] n≥2