证明:
作AM⊥BC于M,AN⊥CD于N
∵平行四边形ABCD的面积=BC×AM=CD×AN
∴AM=CD×AN/BC
∵EF//BD
∴BE/BC =DF/CD
∴BE=BC×DF/CD
∵S⊿ABE=½BE×AM=½(BC×DF/CD)×(CD×AN/BC)=½DF ×AN
S⊿ADF=½DF×AN
∴S⊿ABE=S⊿ADF
证明:
作AM⊥BC于M,AN⊥CD于N
∵平行四边形ABCD的面积=BC×AM=CD×AN
∴AM=CD×AN/BC
∵EF//BD
∴BE/BC =DF/CD
∴BE=BC×DF/CD
∵S⊿ABE=½BE×AM=½(BC×DF/CD)×(CD×AN/BC)=½DF ×AN
S⊿ADF=½DF×AN
∴S⊿ABE=S⊿ADF