圆锥曲线中椭圆的性质的问题椭圆在x轴上的一个焦点和y轴上短轴的两个端点是等边三角形的三个顶点,且焦点和离它较近的长轴的端

1个回答

  • 设椭圆的方程为x^2/a^2+y^2/b^2=1,a>b>0,

    椭圆在x轴上的一个焦点和y轴上短轴的两个端点是等边三角形的三个顶点,

    ∴a=2b,c=√3b,

    焦点和离它较近的长轴的端点的距离a-c=(2-√3)b=1-(√3)/2,b=1/2,

    ∴a=1,

    ∴椭圆方程是x^2+y^2/(1/4)=1,即x^2+4y^2=1.