因为AD是∠BAC的角平分
线
所以∠BAD=∠CAD
在AB上作AE=AC
又AD=AD
由SAS得:△EAD=△CAD
所以∠EDA=∠CDA,ED=CD
又因为∠CDA=∠B+∠BAD,
∠BDA=∠C+∠CAD,∠C=2∠B
所以∠BDE=∠BDA-∠EDA
=(∠C+∠CAD)-∠CDA
=(2∠B+CAD)-(∠B+∠BAD)
=∠B
所以△BED为等腰三角形
所以EB=ED=CD
所以AB=AE+EB=AC+CD
因为AD是∠BAC的角平分
线
所以∠BAD=∠CAD
在AB上作AE=AC
又AD=AD
由SAS得:△EAD=△CAD
所以∠EDA=∠CDA,ED=CD
又因为∠CDA=∠B+∠BAD,
∠BDA=∠C+∠CAD,∠C=2∠B
所以∠BDE=∠BDA-∠EDA
=(∠C+∠CAD)-∠CDA
=(2∠B+CAD)-(∠B+∠BAD)
=∠B
所以△BED为等腰三角形
所以EB=ED=CD
所以AB=AE+EB=AC+CD