a=m^2+n^2
b=m^2-n^2
c=2mn
b^+c^2=(m^2-n^2)^2+(2mn)^2
=m^4-2m^2*n^2+n^4+4m^2*n^2
=m^4+2m^2*n^2+n^4=(m^2+n^2)=a^2
即:b^2+c^2=a^2
所以三角形ABC为直角三角形
a=m^2+n^2
b=m^2-n^2
c=2mn
b^+c^2=(m^2-n^2)^2+(2mn)^2
=m^4-2m^2*n^2+n^4+4m^2*n^2
=m^4+2m^2*n^2+n^4=(m^2+n^2)=a^2
即:b^2+c^2=a^2
所以三角形ABC为直角三角形