设数列{an}的前n项和Sn=n²..{bn}是各项均为正数的等比数列且a1=b1 a5×b3=1

1个回答

  • n=1,时a1=S1=1

    n>=2时,an=Sn-S(n-1)=n^2-(n-1)^2=2n-1

    故an=2n-1

    a5=9

    b1=a1=1

    a5*b3=1,b3=1/9

    q^2=b3/b1=1/9

    q=1/3

    故bn=b1q^(n-1)=(1/3)^(n-1)

    (2)cn=(2n-1)*(1/3)^(n-1)=3(2n-1)*(1/3)^n

    Tn=3[1*1/3+3*(1/3)^2+...+(2n-1)*(1/3)^n]

    1/3Tn=3[1*(1/3)^2+3*(1/3)^3+...+(2n-1)*(1/3)^(n+1)]

    Tn-1/3Tn=3[1/3+2(1/3)^2+2(1/3)^3+...+2(1/3)^n-(2n-1)*(1/3)^(n+1)]

    2Tn/3=3[1/3+2*(1/3)^2*(1-(1/3)^(n-1))/(1-1/3)-(2n-1)*(1/3)^(n+1)]

    Tn=9/2[1/3+2/9(1-(1/3)^n*3)*3/2-(2n-1)*(1/3)^(n+1)]

    =3/2+3/2-9/2*(1/3)^n-(2n-1)*(1/3)^(n)*1/3*9/2

    =3-9/2*(1/3)^n-3/2*(2n-1)*(1/3)^n