(1)∵数列{a[n]}满足a[1]=1,a[n+1]-2a[n]=2n-1
∴a[n+1]=2a[n]+2n-1 【1】
用待定系数法:a[n+1]+x(n+1)+y=2(a[n]+xn+y)
将【1】代入:2a[n]+2n-1+xn+x+y=2a[n]+2xn+2y
即:(2+x)n+(x+y-1)=2xn+2y
∴2+x=2x,得:x=2
x+y-1=2y,得:y=1
∴a[n+1]+2(n+1)+1=2(a[n]+2n+1)
∵a[1]+2+1=4
∴{a[n]+2n+1}是首项为4,公比为2的等比数列
∴a[n]+2n+1=4*2^(n-1)=2^(n+1)
即:a[n]=2^(n+1)-2n-1
(2)S[n]=a[1]+a[2]+...+a[n]
=(2^2-2*1-1)+(2^3-2*2-1)+...+[2^(n+1)-2n-1]
=2^2(2^n-1)-n(n+1)-n
=2^(n+2)-(n^2+2n+4)