设a=sinx,b=cosx,则a²+b²=sin²x+cos²x=1,
2a+b=2sinx+cosx
=√5[sin(2/√5)+cosx(1/√5)]
=√5[(sinxcosf+cosxsinf) tanf=(1/2)
=√5sin(x+f)
所以函数的值域是[-√5,√5]
设a=sinx,b=cosx,则a²+b²=sin²x+cos²x=1,
2a+b=2sinx+cosx
=√5[sin(2/√5)+cosx(1/√5)]
=√5[(sinxcosf+cosxsinf) tanf=(1/2)
=√5sin(x+f)
所以函数的值域是[-√5,√5]