设f(x)=h(x)+g(x),其中h(x)是偶函数,g(x)是奇函数
则f(-x)=h(-x)+g(-x)=h(x)-g(x)
由此两式可解得得h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2
显然此解满足条件,且是唯一的,即
对称区间上的任何函数都可以唯一的表示成一个偶函数和一个奇函数之和
即f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2
设f(x)=h(x)+g(x),其中h(x)是偶函数,g(x)是奇函数
则f(-x)=h(-x)+g(-x)=h(x)-g(x)
由此两式可解得得h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2
显然此解满足条件,且是唯一的,即
对称区间上的任何函数都可以唯一的表示成一个偶函数和一个奇函数之和
即f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2