设λ1,λ2,λ3是3阶方阵A的三个不同特征值,α1,α2,α3分别是对应特征向量,令P=
1个回答
P^(-1)(A+E)P
= P^(-1)AP + P^(-1)EP
= diag(λ1,λ2,λ3) + E
= diag(λ1+1,λ2+1,λ3+1)
相关问题
线性代数题(⊙o⊙)多谢!设三阶方阵A有三个不同的特征值λ1λ2λ3.对应的特征向量为α1α2α3 β=α1+α2+α3
设3阶矩阵A有特征值λ1=-1,λ2=λ3=1,对应的特征向量分别为α1=(1,-1,1)T,α2=(1,0,-1)T,
线性代数问题 1元.设λ1、λ2是n阶矩阵A的两个不同特征值,对应的特征向量分别为α1、α2,试证:c1α1+c2α2(
设λ1,λ2是3阶矩阵A的两个不同的特征值,α1,α2是A的属于λ1的线性无关的特征向量,α3是A的属于λ2的特征向量,
已知λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求出α2,(A^2)×(α1+α2)线性无关的
已知三阶实对称矩阵A的三个特征值为λ1=2,λ2=λ3=1,且对应于λ2,λ3的特征向量为:α2=(1,1,-1)^T
设A为3阶方阵,A的3个特征值分别为1,-1,2,对应的特征向量分别为α1,α2,α3,
设三阶十对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为α1=(0,1,1)^T,求属于特征值
3阶方阵A的特征值 λ1=1,λ2=0,λ3=-1,对应特征向量依次为p1=(1,2,2)T,p2=(2,-2,1)T,
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.若k1+k2仍为特征向