解(1)∵等腰直角三角形ABC中,∠BAC=90°,
∴AC=AB,∠ACB=∠ABC=45°,
又∵AD=AE,∠CAD=∠BAE,
∵△ACD≌△ABE(SAS),
∴∠1=∠3,
∵∠BAC=90°,
∴∠3+∠2=90°,∠1+∠4=90°,
∴∠4+∠3=90°
∴FG⊥CD,
∵∠CMF+∠4=90°,
∴∠3=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∴△EGM为等腰三角形.
(2)答:线段BG、AF与FG的数量关系为BG=AF+FG.
证明:过点B作AB的垂线,交GF的延长线于点N,
∵BN⊥AB,∠ABC=45°,
∴∠FBN=45°=∠FBA.
∵FG⊥CD,
∴∠BFN=∠CFM=90°﹣∠DCB,
∵AF⊥BE,
∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,
由(1)可得∠DCB=∠EBC,
∴∠BFN=∠BFA,
又∵BF=BF,
∴△BFN≌△BFA(ASA),
∴NF=AF,∠N=∠5,
又∵∠GBN+∠2=90°,
∴∠GBN=∠5=∠N,
∴BG=NG,
又∵NG=NF+FG,
∴BG=AF+FG.
故答案为:BG=AF+FG.