解法一:原式=lim(x->π)[sin(π-x)/(x-π)] (应用三角函数诱导公式)
=-lim(x->π)[sin(x-π)/(x-π)]
=-1 (应用重要极限lim(x->0)(sinx/x)=1)
解法二:原式=lim(x->π)(cosx) (0/0极限,应用罗比达法则)
=-1
解法一:原式=lim(x->π)[sin(π-x)/(x-π)] (应用三角函数诱导公式)
=-lim(x->π)[sin(x-π)/(x-π)]
=-1 (应用重要极限lim(x->0)(sinx/x)=1)
解法二:原式=lim(x->π)(cosx) (0/0极限,应用罗比达法则)
=-1