有甲乙丙三个圆柱体,甲底面半径是乙底面半径的[1/2],是丙底面半径的2倍,丙的高是甲的高的2倍,是乙的高的4倍.

3个回答

  • 解题思路:可设乙的底面半径是r,乙的高是h,然后分别求出它们的底面积、侧面积、体积,再进行比较.据此解答.

    设乙的底面半径是r,则甲的底面半径是[1/2]r,丙的底面半径是[1/4]r,乙的高是h,则丙的高是4h,甲的高是2h.

    (1)πr2÷[π×([1/2]r)2],

    =πr2÷[1/4]πr2

    =4,

    答:乙的底面积是甲底面积的4倍.

    (2)2πrh:(2π[1/4]r×4h),

    =2πrh:2πrh,

    =1:1,

    答:乙的侧面积与丙的侧面积的比是1:1.

    (3)πr2h÷[π×([1/2]r)2×2h],

    =πr2h÷[1/2]πr2h,

    =2.

    答:乙的体积是甲体积的2倍.

    点评:

    本题考点: 圆柱的侧面积、表面积和体积.

    考点点评: 本题的主要考查了基本的数量:求一个数是另一个数的几倍是多少用除法计算.