f(x)=x3-3ax+b
y'=3x^2-3a
曲线y=f(x)在点(2,f(2))处与直线y=8相切
故y'(2)=0 f(2)=8
即3x4-3a =0 a=4
2^3-6a+b=8 b=24
即y'=3x^2-3a =3x^2-12=3(x+2)(x-2)
当y'>0时,f(x)为增函数,即此时x∈(-无穷,-2)或x∈(2,+无穷)
当y'<0时,f(x)为减函数,即此时x∈(-2,2)
当x∈[-3,3]时,
即x∈[-3,-2]为增函数,f(x)极大=f(-2)=40
x∈[-2,2]为减函数,f(x)极小=f(2)=8
又f(-3)=33
f(3)=15
故在当x∈[-3,3]时,f(x)max=f(-2)=40
f(x)min=f(2)=8