1.(5-x)/(5+x)>0
解得x∈(-5,5)
f(x)∈(0,+无穷)
2.y=f(x)=lg(5-x/5+x)
f(-x)=lg(5+x/5-x)=lg(5-x/5+x)^(-1)=-lglg(5-x/5+x)=-f(x),故y=f(x)为奇函数;
3.y=f(x)=lg(5-x/5+x)=lg(5-x)-lg(5+x)
由于5-x在-5
1.(5-x)/(5+x)>0
解得x∈(-5,5)
f(x)∈(0,+无穷)
2.y=f(x)=lg(5-x/5+x)
f(-x)=lg(5+x/5-x)=lg(5-x/5+x)^(-1)=-lglg(5-x/5+x)=-f(x),故y=f(x)为奇函数;
3.y=f(x)=lg(5-x/5+x)=lg(5-x)-lg(5+x)
由于5-x在-5