在线性空间R^3中,设α=(1,1,1),β=(1,2,3),由α和β生成子空间W=L(α,β),则W的正交补为____
1个回答
解:
1 1 1
1 2 3
r2-r1
1 1 1
0 1 2
r1-r2
1 0 -1
0 1 2
基础解系为 c=(1,-2,1)^T
所以W的正交补为c生成的子空间 L(c).
相关问题
线性空间在欧式空间V中,若β与α1,α2……αn均正交,则β与α1,α2……αn的任一线性组合都正交
设α1,α2,α3与β1,β2,β3都是三维向量空间V的基,且β1=α1,β2=α1+α2,β3=α1+α2+α3,则矩
1.设β1=2α1-α2,β2=α1+α2,β3= -α1+3α2,证明β1,β2,β3线性相关.
设β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1 证明向量组β1,β2,β3,β4线性相关
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )
设向量组α1,α2,α3线性无关,记β1=α1,β2=α2+2α3,β3=α1+2α2+3α3,证明β1,β2,β3也线
设α1,α2,α3,β1,β2属于R^4,A=(α1,α2,α3,β1),B=(α1,α2,β2,β3),C=(α3,α
设向量组α1,α2,…,αr线性无关,证明向量组β1=α1+αr,β2=α2+αr,…,βr-1=αr-1+αr,βr=
大学线性代数题目:设R4的一组基为α1,α2,α3,α4,令β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=
α1,α2…αr,β都是n维向量,β能由α1,α2,…,αr线性表示,但β不能由α2,α3,…,αr线性表示