前n项和为sn=n2-n/2 则数列

1个回答

  • 等下,计算中……

    Tn =[ 2^(n+1) / (n+1) ] - 2

    设Tn的项为bn;

    则bn = (n-1)2^n / n*(n+1)

    =(2^n/n) - (1/n)(2^(n+1)/(n+1))

    Tn = (2^1 / 1) +……+(2^n-1)/(n-1) - (1/(n-1))(2^n/n) + (2^n/n) - 1/n (2^(n+1)/(n+1))

    = (2^1 / 1) +……+(2^n-1)/(n-1) - [(1/(n-1))(2^n/n)+(2^n/n) ] - 1/n (2^(n+1)/(n+1))

    ∵ [(1/(n-1))(2^n/n)+(2^n/n) ]= 2*b(n-1)

    ∴ =2+2*b1+……+2b(n-1) - 1/n(2^(n+1) / (n+1))

    2Tn = 2b1+…………+2bn

    下面的式子减上面的式子得:Tn = 2bn + ( 1/n )(2^(n+1)/(n+1)) - 2

    =( 2^(n+1) / (n+1) ) -2

    很辛苦的说……望采纳啊,亲!