等下,计算中……
Tn =[ 2^(n+1) / (n+1) ] - 2
设Tn的项为bn;
则bn = (n-1)2^n / n*(n+1)
=(2^n/n) - (1/n)(2^(n+1)/(n+1))
Tn = (2^1 / 1) +……+(2^n-1)/(n-1) - (1/(n-1))(2^n/n) + (2^n/n) - 1/n (2^(n+1)/(n+1))
= (2^1 / 1) +……+(2^n-1)/(n-1) - [(1/(n-1))(2^n/n)+(2^n/n) ] - 1/n (2^(n+1)/(n+1))
∵ [(1/(n-1))(2^n/n)+(2^n/n) ]= 2*b(n-1)
∴ =2+2*b1+……+2b(n-1) - 1/n(2^(n+1) / (n+1))
2Tn = 2b1+…………+2bn
下面的式子减上面的式子得:Tn = 2bn + ( 1/n )(2^(n+1)/(n+1)) - 2
=( 2^(n+1) / (n+1) ) -2
很辛苦的说……望采纳啊,亲!