全部都是.

1个回答

  • 小学数学概念大全 三角形的面积=底×高÷2. 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度. 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积. 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh 圆锥的体积=1/3底面×积高.公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 分数的乘法则:用分子的积做分子,用分母的积做分母. 分数的除法则:除以一个数等于乘以这个数的倒数. 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变. 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变. 3、乘法交换律:两数相乘,交换因数的位置,积不变. 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变. 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变. 如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O. 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾. 7、么叫等式?等号左边的数值与等号右边的数值相等的式子 叫做等式. 等式的基本性质:等式两边同时乘以(或除以)一个相同的数, 等式仍然成立. 8、什么叫方程式?答:含有未知数的等式叫方程式. 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式. 学会一元一次方程式的例法及计算.即例出代有χ的算式并计算. 10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数. 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小. 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变. 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母. 15、分数除以整数(0除外),等于分数乘以这个整数的倒数. 16、真分数:分子比分母小的分数叫做真分数. 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1. 18、带分数:把假分数写成整数和真分数的形式,叫做带分数. 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数 (0除外),分数的大小不变. 20、一个数除以分数,等于这个数乘以分数的倒数. 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.数量关系计算公式方面 1、单价×数量=总价 2、单产量×数量=总产量 3、速度×时间=路程 4、工效×时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 有余数的除法: 被除数=商×除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6) 6、 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米. 1亩=666.666平方米. 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变. 8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18 9、比例的基本性质:在比例里,两外项之积等于两内项之积. 10、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18 11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y 12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系. 如:x×y = k( k一定)或k / x = y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比. 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了. 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位. 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了. 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数. 15、要学会把小数化成分数和把分数化成小数的化发. 16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.) 17、互质数: 公约数只有1的两个数,叫做互质数. 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数. 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.(约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数. 分数计算到最后,得数必须化成最简分数. 个位上是0、2、4、6、8的数,都能被2整除,即能用2进行 约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用. 22、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数. 23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数). 24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数. 28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 29、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率. 30、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数. 31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 141414 32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数. 如3. 141592654 33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3. 141592654…… 34、什么叫代数? 代数就是用字母代替数. 35、什么叫代数式?用字母表示的式子叫做代数式.如:3x =(a+b )*c