当m=1/2+√3,求m+2分之㎡- m-6加上㎡-m分之√㎡-2m+1的值

1个回答

  • m+2分之㎡- m-6加上㎡-m分之√㎡-2m+1

    =m+㎡/2- m-6+㎡-√㎡/m-2m+1 因为m>0,所以√㎡=m

    =m+㎡/2- m-6+㎡-m/m-2m+1

    =m+㎡/2- m-6+㎡-1-2m+1

    =㎡/2+㎡+m- m-2m-6-1+1

    =3㎡/2-2m-6

    =3(1/2+√3)²/2-2(1/2+√3)-6

    =3(1/4+√3+3)/2-2(1/2+√3)-6

    =(3/4+3√3+9)/2-(1+2√3)-6

    =3/8+3√3/2+9/2-1-2√3-6

    =3/8+9/2-1-6+3√3/2-2√3

    =3/8+36/8-56/8+3√3/2-4√3/2

    =-17/8-√3/2