已知函数fx=(1+1/tanx)sin^x-2sin(x+π/4)sin(x-π/4)

1个回答

  • f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)

    =(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]

    =(sinx)^2+sinxcosx+2sin(x+π/4)cos(x+π/4)

    =(sinx)^2+sinxcosx+sin(2x+π/2)

    =1/2*(1-cos2x)+1/2*sin2x+cos2x

    =1/2*sin2x+1/2*cos2x+1/2

    =√2/2*sin(2x+π/4)+1/2

    1,因为tanx=2

    所以sin2x=2tanx/[1+(tanx)^2]=4/(1+4)=4/5

    cos2x=[1-(tanx)^2]/[1+(tanx)^2]=(1-4)/(1+4)=-3/5

    所以f(x)=1/2*sin2x+1/2*cos2x+1/2

    =1/2*(4/5)+1/2*(-3/5)+1/2

    =4/10-3/10+1/2

    =3/5

    2,f(x)=√2/2*sin(2x+π/4)+1/2

    ∵π/12≤x≤π/2

    ∴π/6≤2x≤π

    ∴5π/12≤2x+π/4≤5π/4

    所以-√2/2≤sin(2x+π/4)≤1

    ∴0≤√2/2*sin(2x+π/4)+1/2≤(√2+1)/2

    即f(x)的取值范围为[0,(√2+1)/2]