sinB=sin[180-(A+C)]
=sin(A+C)=4/5
因为A为最小角,C为最大角,
所以cosB=3/5,
即cos(A+C)=3/5
cos(2A+C)=cos[(A+C)+A]
=cos(A+C)cosA-sin(A+C)sinA
=3/5*cosA-4/5*sinA
=-4/5
因为sin^2A+cos^2A=1,
得,sinA=7/25,
cos2(B+C)=cos2(180-A)
=cos2A=1-2sin^2A
=527/625
sinB=sin[180-(A+C)]
=sin(A+C)=4/5
因为A为最小角,C为最大角,
所以cosB=3/5,
即cos(A+C)=3/5
cos(2A+C)=cos[(A+C)+A]
=cos(A+C)cosA-sin(A+C)sinA
=3/5*cosA-4/5*sinA
=-4/5
因为sin^2A+cos^2A=1,
得,sinA=7/25,
cos2(B+C)=cos2(180-A)
=cos2A=1-2sin^2A
=527/625