如图,延长CE到F,使EF=CE,连接FB,要证CE=CD,则证△AEC≌△BEF.由CE是AB边上的中线,∠BEF=∠AEC,得△AEC≌△BEF,进而得∠1=∠A,FB=BD,所以△CDB≌△CFB可得CE=CD.证明:如图,延长CE到F,使EF=CE,连接FB,
∵CE是AB边上的中线,
∴AE=BE,
又∵∠BEF=∠AEC,
∴△AEC≌△BEF,
∴FB=AC,∠1=∠A,
∵BD=AB,
∴FB=BD,
∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF,
又∵BC为公共边,
∴△CDB≌△CFB,
∴CD=CF=2CE,
即CE=CD.点评:此题考查了三角形的判定和性质,同时考查了同学们的动手作图能力,同学们应灵活运用.