f(x)'=e^(-x)-xe^(-x)
=e^(-x)(1-x)
这样当x在[0,1]上时f递增,在[1,2]上f递减
又f(0)=0,f(1)=e^(-1),f(2)=2e^(-2)
因此最大值为e^(-1),最小值为0
补充:求导
f(x)'=[xe^-x]'
=(x)'e^-x+x(e^-x)'
=e^-x+xe^-x*(-x)'
=e^-x-xe^-x
f(x)'=e^(-x)-xe^(-x)
=e^(-x)(1-x)
这样当x在[0,1]上时f递增,在[1,2]上f递减
又f(0)=0,f(1)=e^(-1),f(2)=2e^(-2)
因此最大值为e^(-1),最小值为0
补充:求导
f(x)'=[xe^-x]'
=(x)'e^-x+x(e^-x)'
=e^-x+xe^-x*(-x)'
=e^-x-xe^-x