如题,求不定积分:∫lnxarctanxdx

1个回答

  • ∫lnxarctanxdx=∫lnxd(xarctanx-1/2ln(1+x²))=lnx(xarctanx-1/2ln(1+x²))-∫(xarctanx-1/2ln(1+x²))dlnx=lnx(xarctanx-1/2ln(1+x²))-∫arctanxdx+1/2∫ln(1+x²)/xdx=lnx(xarctanx-1/2ln(1+x²))-(xarctanx-1/2ln(1+x²))+1/2∫ln(1+x²)/xdx,∫ln(1+x²)/xdx应该无法表示为初等函数.