解题思路:(1)当四边形ABCD为菱形时,由菱形的轴对称性可求C、D两点坐标,又PC⊥x轴,PD⊥y轴,则P、C两点横坐标相等,P、D两点纵坐标相等,可求P点坐标,确定双曲线解析式;
(2)联立直线与双曲线解析式,求P点坐标,可判断△OAD,△OBC为等腰直角三角形,从而确定四边形ABCD的形状.
(1)解法一:∵四边形ABCD为菱形,
∴OA=OC,OB=OD(1分)
可得点p的坐标为P(3,4)(3分)
∴k=12,即双曲线的解析式为y=
12
x(x>0,k>0)(5分)
解法二:
由勾股定理可求得菱形的边长为5,所以求得点C、点D的坐标C(3,0)、D(0,4),
所以点P坐标为P(3,4),下同解(一);
(2)依题意:联立
y=
3
4x
y=
12
x,
解得
x=4
y=3(x>0),
即P(4,3)(7分)
此时,OA=OD=3、OB=OC=4,△OAD,△OBC为等腰直角三角形,
∴AD∥BC,(9分)
又据勾股定理求得AB=CD=5.
所以四边形ABCD为等腰梯形(10分)
点评:
本题考点: 反比例函数综合题.
考点点评: 本题考查了反比例函数的综合运用.关键是通过坐标系里图形的轴对称性,特殊三角形的性质,求点的坐标,确定双曲线的解析式.