已知|ab+2|+(a+1)^2=0
因为|ab+2|≥0,(a+1)^2≥0
所以,当它们之和为零时,必然是两者同时为零
所以,ab+2=0,a+1=0
所以,a=-1,b=2
所以原式=1/[(-2)*3]+1/[(-3)*4]+……+1/[(-101)*102]
=-[1/(2*3)+1/(3*4)+……+1/(101*102)]
=-[(1/2)-(1/3)+(1/3)-(1/4)+……+(1/101)-(1/102)]
=-[(1/2)-(1/102)]
=-25/51
已知|ab+2|+(a+1)^2=0
因为|ab+2|≥0,(a+1)^2≥0
所以,当它们之和为零时,必然是两者同时为零
所以,ab+2=0,a+1=0
所以,a=-1,b=2
所以原式=1/[(-2)*3]+1/[(-3)*4]+……+1/[(-101)*102]
=-[1/(2*3)+1/(3*4)+……+1/(101*102)]
=-[(1/2)-(1/3)+(1/3)-(1/4)+……+(1/101)-(1/102)]
=-[(1/2)-(1/102)]
=-25/51