某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售

1个回答

  • 解题思路:(1)销售量y件为200件加增加的件数(80-x)×20;

    (2)利润w等于单件利润×销售量y件,即W=(x-60)(-20x+1800),整理即可;

    (3)先利用二次函数的性质得到w=-20x2+3000x-108000的对称轴为x=-

    3000

    2×(−20)

    =75,而-20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.

    (1)根据题意得,y=200+(80-x)×20

    =-20x+1800,

    所以销售量y件与销售单价x元之间的函数关系式为y=-20x+1800(60≤x≤80);

    (2)W=(x-60)y

    =(x-60)(-20x+1800)

    =-20x2+3000x-108000,

    所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=-20x2+3000x-108000;

    (3)根据题意得,-20x+1800≥240,解得x≤78,

    ∴76≤x≤78,

    w=-20x2+3000x-108000,

    对称轴为x=-

    3000

    2×(−20)=75,

    ∵a=-20<0,

    ∴抛物线开口向下,

    ∴当76≤x≤78时,W随x的增大而减小,

    ∴x=76时,W有最大值,最大值=(76-60)(-20×76+1800)=4480(元).

    所以商场销售该品牌童装获得的最大利润是4480元.

    点评:

    本题考点: 二次函数的应用.

    考点点评: 本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.