(1) 由已知有:
S[n+1] = S[n]+a[n+1] = S[n] + (n+2)/n *S[n]
==> S[n+1]/(n+1) = 2S[n]/n
==> { S[n+1]/(n+1)}/{S[n]/n} =2
可知 {S[n]/n} 为公比为2的等比数列;
(2 S[1] =a[1] =1,因此
S[n]/n = (S[1]/1)* 2^(n-1) = 2^(n-1)
==> S[n] = n*2^(n-1)
a[n] = S[n] - S[n-1] = n*2^(n-1) -(n-1)*2^(n-2) = (n+1)*2^(n-2)
S[n+1] = (n+1)*2^n = 4*(n+1)*2^(n-2)
==> S[n+1] = 4a[n]
结论得证