op;iopiop;io[;pi0op;
已知f(x)=-x∧3-ax在(-∞,-1]上递减,且g(x)=2x-a/x在区间(1,2]上既有最大值又有最小值,则a
1个回答
相关问题
-
已知函数g(x)=ax^2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设f(x)=g(x)/x
-
已知函数f(x)=x^2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)/x在区间(1,+∞)上一定是
-
已知函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=g(x)x.
-
已知函数g(x)=ax2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设函数f(x)=g(x)x.
-
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)x在区间(1,+∞)上一定( )
-
已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=g(|x
-
已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上是( )
-
已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上是( )
-
已知函数g(x)=ax²-4ax+b(a>0)在区间【0,1】上有最大值1和最小值-2.设f(x)=g(x)/
-
已知函数f(x)=x^2-2ax+a在区间(-无穷,0)上有最小值,则函数g(x)=f(x)/x在区间(1,+无穷)上一