在△ABC中,内角A,B,C的对边分别是a,b,c,已知b方=ac,且cosB=3分之5,求tanA+tanC

2个回答

  • ∵ cosB=3/5,sin^2B+ cos2^B=1∴sin^2B=1- cos^2B,

    sin^2B =1-(3/5)^2 =16/25,sinB=√(1- cos^2B)=√1-(3/5)^2=4/5,(其中√是根号、^2是平方)

    ∵0°<B<180°∴sinB>0,

    又∵正弦定理a/sinA=b/sinB=c/sinC=2R得a=2RsinA,b=2RsinB,c=2RsinC;

    分别代入b^2=ac 得 sin^2B= sinA× sinC;

    cosB= cos((180-(A+C)) A+B+C=180°,B=180°-(A+C);三角形内角和.

    =- cos(A+C)

    =-(cosA cosC- sinA sinC)

    = sinA sinC- cosA cosC,

    整理得

    cosA cosC= sinA sinC- cosB

    = sin^2B- cosB

    =16/25-3/5

    =1/25.

    tanA+tanC= sinA/cosA+sinC/cosC

    = (sinA cosC+ cosA sinC)/cosA cosC

    = sin(A+C)/ cosA cosC

    = sinB/ cosA cosC

    =(4/5)/(1/25)

    =20.

    ※(cosB=3分之5)是不可能,我改为(cosB=5分之3)来回答了,高考在后,答题马虎不得!不知你满意否,但愿对你有所帮助.吉林 汪清