各项为正数的数列{an},其前n项和为Sn,且Sn=(√(Sn-1)+√a1)^2(n≥2),数列{bn}的前n项和为T

1个回答

  • 当n≥2是

    Sn=(√(Sn-1)+√a1)^2

    √Sn=√(Sn-1)+√a1

    √Sn-√(Sn-1)=√a1

    ∴{√Sn}为等差数列,公差为√a1

    ∴√Sn=n√a1

    ∴Sn=n^2 *a1

    S(n+1)=(n+1)^2*a1

    a(n+1)=(2n+1)a1

    an=(2n-1)a1

    bn=an+1/an+an/an+1

    =(2n+1)/(2n-1)+(2n-1)/(2n+1)

    =[(2n-1)+3]/(2n-1)+[(2n+1)-3]/(2n+1)

    =1+3/(2n-1)+1-3/(2n+1)

    =2+3/(2n-1)-3/(2n+1)

    Tn=b1+b2+b3+.+bn

    =(2+3/1-3/3)+(2+3/3-3/5)+.+[2+3/(2n-1)-3/(2n+1)]

    =2n+3[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]

    =2n+3[1-1/(2n+1)]=2n+6n/(2n+1)=4n(n+2)/(2n+1)