解题思路:设等腰三角形ABC的腰AB=AC长为2x,底为y,根据三角形中线公式,可以得到2x2+y2=8,进而由柯西不等式可以得到△ABC周长4x+y的取值范围.
设等腰三角形ABC的腰AB=AC长为2x,底为y,
∵腰AB上的中线CD的长为2,
由中线公式可得2x2+y2=8①
则周长C=4x+y②
由柯西不等式就可得
(2x2+y2)(8+1)≥(4x+y)2
所以4x+y≤6
2
当且仅当2x2=8y2,即x=
4
2
3,y=
2
2
3时
△ABC周长取最大值为6
2
故答案为:6
2
点评:
本题考点: 二维形式的柯西不等式.
考点点评: 本题考查的知识点是柯西不等式,其中根据三角形中线公式求出等腰三角形ABC的腰AB=AC长为2x,底为y时,2x2+y2=8是解答的关键.