已知数列an的首项a1=3R,对任意自然数n都有2R/(an-an+1)=n(n+1)

1个回答

  • 第二问应该是bn=R^n/(a1a2a3……an)?

    (1)

    2R/(an-an+1)=n(n+1),an+1-an= -2R/n(n+1)= -2R[1/n-1/(n+1)],得到:

    a2-a1= -2R(1-1/2),a3-a2= -2R(1/2-1/3).an-1-an-2= -2R[1/(n-2)-1/(n-1)],an-an-1=-2R[1/(n-1)-1/n],将以上等式进行左加左、右加右叠加得到:an-a1= -2R(1-1/n),将a1=3R代入得到an=R(1+2/n)=R(n+2)/n

    数列an通项为an=R(1+2/n)=R(n+2)/n

    (2)

    a1a2.an=R(3/1)R(4/2)R(5/3).R(n+2)/n=R^n[(n+1)(n+2)/2]

    bn=R^n/(a1a2a3……an)=2/[(n+1)(n+2)]=2[1/(n+1)-1/(n+2)]

    Sbn=b1+b2+.+bn=2(1/2-1/3)+2(1/3-1/4)6+.2[1/(n+1)-1/(n+2)]

    =2[1/2-1/(n+2)]

    (n→﹢∞)limSbn=(n→﹢∞)lim2[1/2-1/(n+2)]=1

    数列bn的前n项和为2[1/2-1/(n+2)],极限为1