设∠DAE=x
∠BAC=3x
∠B+∠C=180-∠BAC=180-3x
∵BD=AB,CE=AC
∴∠BDA=(180°-∠B)/2,∠CEA=(180°-∠C)/2
∠DAE=x=180°-∠BDA-∠CEA
=180°-[360°-(∠B+∠C)]/2=180°-(180°+3x)/2
即:x=90°-3x/2
x=36°
∴∠BAC=108°
设∠DAE=x
∠BAC=3x
∠B+∠C=180-∠BAC=180-3x
∵BD=AB,CE=AC
∴∠BDA=(180°-∠B)/2,∠CEA=(180°-∠C)/2
∠DAE=x=180°-∠BDA-∠CEA
=180°-[360°-(∠B+∠C)]/2=180°-(180°+3x)/2
即:x=90°-3x/2
x=36°
∴∠BAC=108°