(1)当n=1时,左边=1/2,右边=1/2.
假设当n=k时,1/2+2/2²+3/2³+.+k/2^k=2-(k+2)/2^k.
(2)当n=k+1时,左边=1/2+2/2²+3/2³+.+k/2^k+(k+1)/2^(k+1)
=2-(k+2)/2^k+(k+1)/2^(k+1)
=2-(k+3)/2^(k+1)
=右边.
故综合(1)(2)等式成立.
(1)当n=1时,左边=1/2,右边=1/2.
假设当n=k时,1/2+2/2²+3/2³+.+k/2^k=2-(k+2)/2^k.
(2)当n=k+1时,左边=1/2+2/2²+3/2³+.+k/2^k+(k+1)/2^(k+1)
=2-(k+2)/2^k+(k+1)/2^(k+1)
=2-(k+3)/2^(k+1)
=右边.
故综合(1)(2)等式成立.