一道超难的几何题

1个回答

  • 用反证法(也可说是同一法).

    ∵∠A=∠A,AD=AE

    ∴要证△ADC≌△AEB,只需证AB=AC

    假设AB≠AC,那么AB

    AC

    当AB

    在AC上取一点C'使AB=AC',显然C'在线段EC上.连结DC'交OE于O',连结CO'

    ∵∠A=∠A,AD=AE,AC'=AB

    ∴△ADC‘≌△AEB

    ∴∠AC'D=∠ABE

    再加上∠DO'B=∠EO'C’,DB=AB-AD=AC'-AE=EC'

    ∴△DO'B≌△EO'C’

    ∴O'B=O'C'

    ∴O'B-OB=O'C'-OC,即O'O=O'C'-OC

    ∴O'O+OC=O'C'

    但∠AED是锐角

    ∴∠DEC是钝角,∠O'C'C>∠DEC也是钝角

    ∴∠O'C'C>∠O'CC'

    ∴O'O+OC>O'C>O'C',矛盾!

    同理,当AB>AC也能推出矛盾.

    ∴假设不成立,AB=AC

    ∴△ADC≌△AEB